Worksheet on Chapters 1 and 2

1 Functions

Problem 1. Consider the function f(x) = 5x + 7. Which of the following is true

- 1. The graph of f(x) does not intersect the line the y = x and therefore it does not have an inverse function
- 2. The inverse function $f^{-1}(x)$ exists and therefore its graph never touches the graph of f(x)
- 3. The graph of $f^{-1}(x)$, the graph of f(x) and the line y = x all meet in exactly one point
- 4. The function $f^{-1}(x)$ exists, but only after restricting the domain of f(x) appropriately

Solution: the function is invertible on the whole domain (\mathbb{R}) and $f^{-1}(x) = \frac{1}{5}x - \frac{7}{5}$. So the answers 2. and 4. are wrong. The graph of f(x) does intersect the line y = x, so the answer 1. is wrong. In any case, having inverse has nothing to do with the graph intersecting the line y = x. So the answer is 3., which is also easily verifiable directly. **Problem 2.** Find the implied domains of the following functions

1. $f(x) = \sqrt{73 - x} - \sqrt{37 + x}$

2.
$$f(x) = 5 \ln(x - 6)$$

Solution: 1. The domain for this function is the intersection of the domains of $\sqrt{73 - x}$ and $\sqrt{37 + x}$. The domain of $\sqrt{73 - x}$ is $(-\infty, 73]$ and the domain of $\sqrt{37 + x}$ is $[-37, +\infty)$. Therefore, the answer is [-37, 73]. 2. The function is defined whenever the argument of ln is positive, i.e. for $x \in (6, +\infty)$. **Problem 3.** Sketch the graph of $y = -\sqrt{2x - 1} + 1$ starting from the graph of $y = \sqrt{x}$. **Solution:**

2 Limits

Problem 4. Multiple Choice. Consider the function

$$f(x) = \begin{cases} x^2 & x \text{ rational} \\ -x^2 & x \text{ irrational} \\ \text{undefined} & x = 0 \end{cases}$$

Then

- 1. There is no a for which $\lim_{x\to a} f(x)$ exists
- 2. There may be an a for which $\lim_{x\to a} f(x)$ exists, but we can't say what it is without more information
- 3. $\lim_{x\to a} f(x)$ exists for a = 0
- 4. $\lim_{x\to a} f(x)$ exists for infinitely many a

Solution: Since for any sequence x_n of inputs getting closer to 0, the sequence of outputs $f(x_n)$ runs over either x_n^2 or $-x_n^2$ both of which tend to 0. So the limit $\lim_{x\to 0} f(x)$ exists, and equals 0.

For any other point $a \neq 0$, if we look at a sequence of inputs x_n running over rational numbers, the outputs $f(x_n)$ will be x_n^2 getting closer to a^2 . If we look at a sequence of irrational numbers x_n getting closer to a, the sequence of outputs $f(x_n) = -x_n^2$ will get closer to $-a^2$. Since $a \neq 0$, $a^2 \neq -a^2$ and so the limit does not exist.

Therefore, x = 0 is the only point where the limit exists.

Problem 5. True or False. The limit $\lim_{x\to a} f(x)$ depends on how f(a) is defined.

Solution: false, the limit only depends on the values near a, not at the point a itself.

Problem 6. True or False. If f(a) is undefined then $\lim_{x\to a}$ cannot exist.

Solution: False, same reason as above.

Problem 7. If $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = 0$ then $\lim_{x\to a} f(x)/g(x)$

- 1. Does not exist
- 2. Must exist
- 3. Not enough information

Solution: 3. is correct. Simple examples show that the limit might exist and might not exist. If we take $f(x) = x^2$ and g(x) = x, the limit of f(x)/g(x) exists and equals 0. If we switch the functions, take f(x) = x and $g(x) = x^2$, the limit will not exist. **Problem 8.** $\lim_{x\to 0} x^2 \sin(1/x)$

- 1. Does not exist because no matter how close x gets to 0, there are x's near zero for which sin(1/x) is 1, and x's for which sin(1/x) is -1
- 2. Does not exist because the function value oscillates around 0
- 3. Does not exist because 1/0 is undefined
- 4. Equals 0
- 5. Equals 1

Solution: Using the Sandwich Theorem, $-x^2 \le x^2 \sin(1/x) \le x^2$ and $\lim_{x \to 0} x^2 = \lim_{x \to 0} (-x^2) = 0$.

Problem 9. Find the all the asymptotes of the function $f(x) = \frac{1 + x^4}{x^2 - x^4}$.

Solution: Since $\lim_{x\to\infty} \frac{1+x^4}{x^2-x^4} = -1$, there is a horizontal asymptote y = -1. Notice that since

 $\lim_{x\to-\infty} \frac{1+x^4}{x^2-x^4} = -1$ as well, there is only one horizontal asymptote.

Vertical asymptotes correspond to points x = a with $\lim_{x \to a^{\pm}} f(x) = \pm \infty$. For rational functions this can only happen at the point where the denominators becomes 0. In this case, at the points where $x^2 - x^4 = 0$, i.e. $x = 0, x = \pm 1$. It is clear that $\lim_{x \to a^{\pm}} f(x)$ at each of these points is infinite. Thus we have three vertical asymptotes: x = 0, x = 1, x = -1.

3 Continuity

Problem 10. You are running a bath but you don't close the tap properly and it is dripping. It drips once per second, each drip raising the level of the bathwater by exactly 1mm.

- 1. Let f be the function that represents hight of the bathwater at time t. Is f(x) a continuous function?
- 2. Let g be the function that describes the volume of water as a function of the height of the bathwater. Is g(x) a continuous function?

Solution: 1. Since the height changes in time by jumps (every time the drop falls), the function is not continuous.

2. Function g is continuous, since arbitrary small increments in height give arbitrary small increments in the volume. This function has nothing to do with the water dripping. **Problem 11.** You know that

If f(x) is a polynomial function then f(x) is continuous.

Which of the following is true.

- 1. If f(x) is continuous then f(x) is a polynomial
- 2. If f(x) is not a polynomial then f(x) is not continuous
- 3. If f(x) is not continuous then f(x) is not a polynomial
- 4. All of the above

Solution: If f(x) is not continuous then f(x) is not a polynomial. **Problem 12.**

- 1. Solve the equation $x^2 + 13x + 41 = 1$.
- 2. Use the IVT to prove that $x^2 + 13x + 41 = \sin x$ has at least 2 solutions between the two roots found above.

Solution: 1. Solving the quadratic equation $x^2 + 13x + 40 = 0$ gives two solutions x = -8 and x = -5.

2. We know that the value of $x^2 + 13x + 41$ at x = -8 and x = -5 is 1. Therefore, the values of $f(x) = x^2 + 13x + 41 - \sin x$ at x = -8 and x = -5 are $1 - \sin(-8)$ and $1 - \sin(-5)$ both positive since $\sin x$ is always ≤ 1 .

Now, if we compute the value in the middle between x = -8 and x = -5, we get

 $f(-6.5) = -1.25 - \sin(6.5)$ which is negative since sin x is always between -1 and 1.

Thus, by IVT, there is a point between x = -8 and x = -6.5 where f(x) = 0, and there is a point between x = -6.5 and x = -5 where f(x) = 0.